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The prediction of the conversion of healthy individuals and those with mild cognitive impairment to the status of active

Alzheimer’s disease is a challenging task. Recently, a survival analysis based upon deep learning was developed to enable predic-

tions regarding the timing of an event in a dataset containing censored data. Here, we investigated whether a deep survival analysis

could similarly predict the conversion to Alzheimer’s disease. We selected individuals with mild cognitive impairment and cognitive-

ly normal subjects and used the grey matter volumes of brain regions in these subjects as predictive features. We then compared

the prediction performances of the traditional standard Cox proportional-hazard model, the DeepHit model and our deep survival

model based on a Weibull distribution. Our model achieved a maximum concordance index of 0.835, which was higher than that

yielded by the Cox model and comparable to that of the DeepHit model. To our best knowledge, this is the first report to describe

the application of a deep survival model to brain magnetic resonance imaging data. Our results demonstrate that this type of ana-

lysis could successfully predict the time of an individual’s conversion to Alzheimer’s disease.
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Introduction
Alzheimer’s disease, a progressive neurodegenerative dis-

order, is the most common cause of dementia in late life

(Breteler et al., 1992). Alzheimer’s disease causes neuron-

al death and tissue loss throughout the brain (Jack et al.,

1997). Consequently, patients usually undergo progressive

stages of cognitive and memory impairment, including

the prodromal stage of Alzheimer’s disease, which is

characterized by mild cognitive impairment (MCI).

Approximately 10–15% of patients with MCI develop

Alzheimer’s disease annually (Petersen et al., 2009), and

currently, there is no cure or method to reverse the pro-

gression of disease. Therefore, computer-aided systems

that can enable an early and accurate prediction of the

onset and classification of the prodromal stage are essen-

tial for the intervention and prevention of Alzheimer’s

disease progression (Bron et al., 2015).
Previous studies have explored MRI biomarkers of

Alzheimer’s disease, including brain atrophy. In particu-

lar, high-dimensional MRI pattern classification methods

have been shown to identify Alzheimer’s disease and

MCI with a high degree of reliability (Arbabshirani et al.,

2017). Many studies have used support vector machines,

a representative method of machine learning (Magnin

et al., 2009; Davatzikos et al., 2011; Khedher et al.,

2015; Moradi et al., 2015; Retico et al., 2015). Another

promising approach involves deep learning, a modern

branch of machine learning inspired by human neural

networks (Jo et al., 2019). This latter approach, which

was developed using complicated algorithms to model

high-level features, can extract abstractions from datasets

(LeCun et al., 2015). Therefore, deep learning is advanta-

geous in terms of automatic feature selection, even

though the learning cost is high when compared to other

approaches. For example, previous studies designed fine

deep learning techniques based on convolutional neural

networks to classify progressive and stable MCI using

MRI data (Lin et al., 2018; Spasov et al., 2019). These

methods achieved accuracies of 0.79–0.86 in cross-valid-

ation studies. Apparently, such machine learning

approaches have successfully classified clinical groups,

including Alzheimer’s disease patients versus normal con-

trols (NC), MCI patients versus NC and progressive MCI

versus stable MCI patients (Arbabshirani et al., 2017).

However, certain important issues remain to

be addressed.

One such issue involves the prediction of the timing

when an individual with MCI or a normal individual will

convert to Alzheimer’s disease. As described above, cer-

tain patients with MCI convert to Alzheimer’s disease,

whereas others remain in the MCI stage. Therefore, it is

important to predict the group of MCI subjects who

would convert to Alzheimer’s disease in the future

(Zhang and Shen, 2012). Previous studies that used ma-

chine learning approaches to classify MCI subjects as

Alzheimer’s disease converters and non-converters have

reported moderate levels of accuracy (66.0–80.9%)

(Arbabshirani et al., 2017). To our knowledge, all previ-

ous research (Arbabshirani et al., 2017) concerning

Alzheimer’s disease conversion has focused on the predic-

tion of converters and non-converters to Alzheimer’s dis-

ease within a 2- or 3-year period. This approach raises

two issues. First, available medical datasets always in-

clude censored data. In this case, the censored data are

information from subjects who were lost to follow-up be-

fore conversion was detected. Previous studies used only

subjects that had completed a 2- or 3-year follow-up as-

sessment, implying the exclusion of censored data.

Moreover, the observation that the censored subjects

were healthy until the censored time point is also import-

ant. Second, it is necessary to forecast whether a subject

would convert to Alzheimer’s disease within 2 or 3 years,

and when, specifically, the conversion would occur.

Therefore, a survival analysis is more suitable for

such databases.

A survival analysis is an analysis of time-to-event data,

which describe the interval between a time origin to an

endpoint of interest (Kartsonaki, 2016). A recently devel-

oped approach that combines survival analysis and deep

learning enables the estimation of the survival durations

of individual patients (Liao and Hyung-il, 2016;
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Ranganath et al., 2016; Luck and Lodi, 2017;

Chaudhary et al., 2018; Huang et al., 2018; Katzman

et al., 2018). For instance, Ranganath et al. (2016) intro-

duced the deep survival analysis, a hierarchical generative

approach to a survival analysis in the context of electron-

ic health records. The analysis uses a Weibull distribu-

tion, which is popular for survival analyses, to model the

time of an event. Ranganath et al. (2016) reported that

the deep survival analysis yielded a more accurate stratifi-

cation of patients based on the risk of developing coron-

ary heart disease. Furthermore, Katzman et al. (2018)

introduced a Cox proportional hazards-based deep neural

network for modelling the interactions between a

patient’s covariates and treatment effectiveness, with the

intent to provide personalized treatment recommenda-

tions. The authors demonstrated that this approach suc-

cessfully modelled complex relationships between a

patient’s covariates and the risk of failure. Both studies

suggested that a survival analysis based on deep learning

could predict an individual’s risk of developing diseases,

as well as possible interventions. In this study, we intro-

duced a deep learning method-based survival analysis to

estimate the probability that an individual would progress

to Alzheimer’s disease in a given period of time.

Materials and methods

Subjects

This study included individuals from the following

cohorts: Alzheimer’s Disease Neuroimaging Initiative,

Australian Imaging, Biomarkers and Lifestyle Flagship

Study of Ageing, Japanese Alzheimer’s Disease

Neuroimaging Initiative and our hospital patients. Data

collection was conducted according to the relevant regula-

tions of each centre (see Supplementary material for

details). All participants provided written consent to par-

ticipate, according to the Declaration of Helsinki.

Approval for the study was obtained from the local eth-

ics committees.

The subjects in the current study were selected from

among patients with diagnosed MCI and NCs at base-

line. This selection was also based on the availability of

magnetization prepared rapid gradient echo images. The

follow-up interval was estimated as the difference be-

tween the date of the baseline MRI measurement and the

diagnosis at follow-up. The subjects’ data are summarized

in Tables 1 and 2. Briefly, we collected the data of 2142

subjects, of whom a quarter converted to Alzheimer’s dis-

ease. The mean intervals of conversion in each database

ranged from 1.4 to 2.6 years. Those who converted to

Alzheimer’s disease were older than non-converters and

had lower mini–mental state examination

(MMSE) scores.

Structural image pre-processing

The pre-processing of T1-weighted images was performed

using statistical parametric mapping and the computation-

al anatomy toolbox on the MATLAB platform

(MathWorks, Natick, MA, USA). All images were spatial-

ly normalized and segmented into grey matter, white mat-

ter and cerebrospinal fluid. The voxel size was 27 mm3.

We extracted the grey matter volume (GMV) of each

region of interest (ROI) based on two atlases (Fig. 1A):

the automated anatomical labelling (AAL), which is fre-

quently used in the field of neuroimaging and consists of

116 regions, and the Brainnetome Atlas (BNA) (Fan

et al., 2016), which contains 246 subregions. We calcu-

lated the mean values of the ROIs for each individual

(Fig. 2A). The analysis was conducted for both atlases

(AAL and BNA).

Feature

The mean GMVs of regions based on the AAL or BNA

were treated as input features for the survival models.

Recently, certain imaging studies demonstrated that clinic-

al information could improve the accuracy of a predic-

tion of conversion to Alzheimer’s disease (Blazhenets

et al., 2019; Zhou et al., 2019). Therefore, we also inves-

tigated whether clinical information could improve the

performance of a survival analysis. Here, we included the

age and MMSE score, which were available for every in-

dividual regardless of the database. Therefore, we set

three patterns: GMV, GMV þ age and GMV þ Age

þ MMSE.

Our deep survival model

The analysis procedure is summarized in Fig. 1B–D. We

treated the follow-up intervals as discrete values to yield

a time set of t¼ 0, 1, . . ., T. T was set as 12 in the cur-

rent study because the maxima of the follow-up interval,

i 2 t, was the time when the event or censoring occurred.

We defined e as the conversion to Alzheimer’s disease (0:

censored, 1: uncensored). Therefore, each data point (i.e.

subject) contained three numbers (x, i, e), where x 2 X is

a n-dimensional covariate (n¼ 116 in case of GMV of

AAL). We were interested in the true probability P (tjx)
for each tuple.

We developed a deep neural network model to com-

pute the time course of an event, which in this case was

the conversion to Alzheimer’s disease. The model took x

as the input. The second to fourth layers consisted of 32

units with the rectified linear unit activation. L1 and L2

regularizations penalized the weights in each layer, and a

dropout rate of 50% was applied to these layers. The

fifth layer consisted of two single units (m, s), which

were the parameters of the cumulative Weibull distribu-

tion [1 � exp(�tm/s)]. These parameters (m, s) decided

the shape and scale of the distribution. The activation

functions of the Weibull distribution parameter layer
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used soft plus and rectified linear unit for m and s, re-

spectively. The conversion ratio was then computed and

stored in the final layer using these parameters. The final

layer contained T units, and the output value at the

index, t, corresponded to the probability of conversion at

t years. This model is shown in Fig. 1B.

To train our model, we minimized the loss function, L,

which was designed to handle censored data. This func-

tion captured both the event and the time when the event

occurred in subjects who were not censored. Conversely,

it captured the time of censoring in censored subjects and

thus provided the information available for the subject at

that time. We defined L using the following formula:

L ¼

�
XN
n¼1

f e ¼ 1ð ÞXT
t¼1

Pt;n � Ct;nð Þ2 þ f e ¼ 0ð ÞXin
t¼1

Pt;n � Ct;nð Þ2
" #

;

where f(e) is an indicator function and Ct,n indicates

whether the subject n had Alzheimer’s disease (1) or not

(0) at time t. The indicator function f(e¼ 1) takes the

value 1 when the event happens and the value 0 when

the event does not happen, whereas f(e¼ 0) takes the

value 0 when the event happens and the value 1 when

the event does not happen. The first term captures the in-

formation provided by the uncensored subjects, whereas

the second term captures the censoring bias by exploiting

the knowledge that the subjects did not have Alzheimer’s

disease at that time. In Fig. 1C, we have illustrated a

frame used to compute the training loss of our deep sur-

vival network. For converters, C is 0 at all times before

first Alzheimer’s disease diagnosis and 1 after that. For

non-converters, C is 0 until the last follow-up examin-

ation and the subsequence indeterminate information is

not considered in the model. The Adam optimizer was

used as a default setting, with a batch number of 128

and a maximum training epoch number of 200. Early

stopping was applied when the validation loss did not

improve over a period of longer than 10 epochs.

The data were partitioned randomly into three sets: a

training set with 80%, a validation set with 10% and

a test set with 10%. The model was trained using a

Table 2 Comparison between converters to Alzheimer’s disease and non-converters

ADNI AIBL JADNI Shimane All

N

Converter 378 30 104 20 532

Non-converter 988 227 315 80 1610

Age (years)

Converter 73.86 7.3 76.66 7.0a 73.66 5.6a 79.26 4.1a 74.16 7.0a

Non-converter 73.66 7.1 72.36 7.0 70.16 6.3 72.66 6.6 72.76 7.0

Female gender (%)

Converter 39.7a 50.0 62.5a 55.0 45.3

Non-converter 46.6 50.2 46.0 52.0 42.3

MMSE

Converter 27.16 1.8a 27.26 2.1a 25.86 1.5a 25.76 2.7a 26.86 1.9a

Non-converter 28.56 1.6 28.66 1.4 28.06 2.0 27.56 2.6 28.46 1.7

Interval

Converter 2.66 2.2a 2.46 1.3a 1.66 0.6a 1.46 1.2a 2.46 2.0a

Non-converter 4.46 2.9 4.06 1.1 2.86 0.6 2.66 2.1 3.96 2.4

aA significant difference between converters and non-converters.

ADNI ¼ Alzheimer’s Disease Neuroimaging Initiative; AIBL ¼ Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing; JADNI ¼ Japanese Alzheimer’s Disease

Neuroimaging Initiative.

Table 1 Characteristics of the study subjects

ADNI AIBL JADNI Shimane All

n 1366 257 419 100 2142

MCI/NC 846/520 49/208 259/160 57/43 1211/931

Age, MCI (years) 72.96 7.7 76.06 7.0 72.96 5.9 76.66 6.9 73.36 7.4

NC 74.96 6.1 72.16 6.9 67.96 5.7 70.36 4.5 72.86 6.6

Sex (F/M) (%) 44.7/55.3 50.2/49.8 50.1/49.9 53.0/47.0 53.2/46.8

MMSE MCI 27.56 1.8 27.26 2.1 26.46 1.7 25.66 2.5 27.26 1.9

NC 29.16 1.1 28.86 1.2 29.26 1.2 29.16 1.2 29.06 1.1

Conversion (n) 378 30 104 20 532

MCI/NC 352/26 25/5 104/0 20/0 501/31

Mean interval (years) 3.9 3.8 2.5 2.3 3.5

MRI (%) (1.5/3.0 T) 43.9/56.2 35.0/65.0 88.5/11.5 93.0/7.0 53.8/46.2

ADNI ¼ Alzheimer’s Disease Neuroimaging Initiative; AIBL ¼ Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing; F ¼ female; JADNI ¼ Japanese Alzheimer’s

Disease Neuroimaging Initiative; M ¼ male.
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maximum of 200 epochs, and the best performing model

with the lowest loss in the validation set was saved. The

model’s performance was then evaluated in the test set.

We repeated this procedure 100 times for every model

and input feature (Fig. 1D).

Model comparison

We compared three models: the Cox proportional haz-

ards model, DeepHit (Lee et al., 2018) and our model.

The Cox proportional hazards model is a standard sur-

vival analysis. This model assumes that a subject’s risk of

event is a linear combination of the patient’s covariates.

In contrast to models with strong parametric assump-

tions, DeepHit uses a deep neural network to learn the

distribution of survival times directly without assumptions

about the underlying stochastic process. Thus, this model

allows for the possibility of a change over time in the re-

lationship between covariates and risk.

A concordance index was used to evaluate the perform-

ance of the three models. This index is a standard meas-

ure used to estimate the efficiency of a model for ranking

survival times by calculating the probability that the

event times of causes taken in pairs will be ranked cor-

rectly (see Supplementary material). The concordance

index was averaged over time (1–10 years).

Statistical analysis

To compare the concordance indices between the models,

two-tailed t-tests were conducted. The P-values were cor-

rected using the Bonferroni method to control Type

I errors.

Contribution of each region

We used a deep Taylor decomposition (Montavon et al.,

2017), which decomposes the model prediction into the

contributions of its input elements, to assess the import-

ance of single ROIs in the prediction of Alzheimer’s dis-

ease conversion (see Supplementary material). We

computed and averaged the relevance scores for the ROI

data in each individual. The ROI-level significance was

assessed using a permutation test that created a null dis-

tribution by repeating the prediction with a randomized

conversion label and interval of 100 times.

Data availability

Alzheimer’s Disease Neuroimaging Initiative (http:// adni.

loni. usc. edu/ ), Australian Imaging, Biomarkers and

Lifestyle Flagship Study of Ageing (https:// aibl. csiro. au/ )

and Japanese Alzheimer’s Disease Neuroimaging Initiative

(https:// humandbs. biosciencedbc. jp/ en/ hum0043-v1)
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data are available publicly via the indicated websites. We

have also made the input features (GMV of each ROI and

demographics) and analysis script of our model available

to the public (github.com/onodak1/demo).

Results
First, we extracted the intermediate parameters (m, s) of

our deep survival models using GMV data of the BNA

for the test sets and averaged these parameters in each

individual. The distribution of parameters is illustrated in

Fig. 2A. As shown in the figure, a subject with a lower s

and a higher m has a higher risk of converting to

Alzheimer’s disease at an earlier time point, whereas a

subject with a higher s and a lower m has a lower risk

of conversion. The distribution of parameters along the

curve is a function of the risk of conversion. We super-

imposed all individual curves of the predicted conversion

probabilities as a function of the follow-up years in

Fig. 2B. To evaluate the effects of group and age on the

probability of Alzheimer’s disease conversion, we com-

puted the mean estimated probability of the MCI/NC

groups or age groups (60–69, 70–79 and 80–89 years) in

each study year. The estimated probability of Alzheimer’s

disease conversion was noticeably higher for the MCI

group than for the NC group (Fig. 2C), and the timewise

change in the MCI group was consistent with a previous

report that the typical rate of conversion to Alzheimer’s

disease in this group is 10–15% per year (Petersen et al.,

2009). In terms of age, the estimated conversion ratio

was higher for older patients (Fig. 2D).

Figure 3 presents the concordance indices calculated in this

study. The datasets comprised 12 patterns, including the atlas

(AAL or BNA), feature (GMV,GMVþAge, or GMVþAgeþ
MMSE) and group (both MCI/NC or only MCI). We applied

threemodels, the traditional standardCox proportional-hazard

model, DeepHit and our model, to each dataset. The concord-

ance index distributions were 0.78–0.83 for the MCI/NC set

and 0.69–0.75 for the MCI set. Overall, the two deep learning

models yielded higher concordance indices when compared

with the Cox model. Particularly, for BNA, the differences be-

tween the deep learning and Cox models were significant (ts

(198) > 5.3, Ps< 10�6). To examine whether clinical informa-

tion would improve the prediction performance, we added the

individual’s age and MMSE score as features. The addition of
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both variables improved the concordance indices in all cases.

Particularly in the MCI/NC set, the concordance indices were

significantly higher for the two deep learning models that

included age andMMSE than for themodels without those var-

iables (ts(198) > 5.3, Ps< 10�6). In the MCI set, our deep sur-

vival models that included age and MMSE yielded higher

concordance indices than those in which only GMV was

included, for both atlases (ts(198) > 4.1, Ps< 10�4). In con-

trast, the addition of age alone did not significantly improve the

concordance indices in every condition. Eventually, our deep

survival model that included the GMV, age andMMSE yielded

maximum concordance indices of 0.835 and 0.753 for the

MCI/NC andMCI sets, respectively.

Figure 4 depicts the contribution of each ROI based on

AAL and BNA in our deep survival model, which was

computed as a relevance score of deep Taylor decompos-

ition. The relevance scores of the inferior parietal cortex,

lateral and medial temporal cortex, cingulate cortex, in-

sula and thalamus are higher than those of other regions.

This result indicates that our deep survival model esti-

mated the conversion probability to Alzheimer’s disease

based on information from these regions.

Discussion
In this study, we used a deep survival analysis to predict

the progression to Alzheimer’s disease from existing data.

This approach appeared to perform better than the stand-

ard Cox proportional-hazard model and comparably to

the existing deep learning model, DeepHit. Both deep sur-

vival models enabled an estimation of the probability

that an individual subject would convert to Alzheimer’s

disease within a given time period.

Brain atrophy, as assessed by MRI, has been used con-

ventionally to predict the conversion to Alzheimer’s dis-

ease. Certain reviews (Arbabshirani et al., 2017;

Leandrou et al., 2018) and articles describing experimen-

tal studies (Costafreda et al., 2011; Eskildsen et al.,

2013; Lin et al., 2018) have summarized previous re-

search that aimed to predict progression to Alzheimer’s

disease. Those reviews suggested that brain atrophy meas-

ures could classify converters and non-converters with ac-

curacy levels ranging between 0.6 and 0.9. Moreover, the

accuracy of classification decreased as the sample size

increased (Leandrou et al., 2018). All previous studies es-

sentially divided MCI subjects into two groups: convert-

ers or non-converters within 2 or 3 years. Therefore,

censored data were not considered when predicting the

conversion to Alzheimer’s disease. As a survival analysis

model is effective for censored data, our deep survival

analysis model based on big data achieved a concordance

index of 0.75 when using only MCI.

The deep survival analysis was first introduced by

Faraggi and Simon (1995), who developed an expanded

Cox proportional hazards model with a neural network
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Figure 3 Comparisons of concordance indices estimated in the Cox proportional-hazard, DeepHit and our deep survival

models. The circles and error bars depict the means and 95% confidence intervals, respectively. Italics and bold type indicate the best model

among the three options. *Bonferroni-corrected P< 0.05 and †uncorrected P< 0.05 indicate a significantly higher concordance index relative to

the Cox model.
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structure. Thereafter, other groups developed different

approaches to the deep survival analysis (Ranganath

et al., 2016; Luck and Lodi, 2017; Chaudhary et al.,

2018; Huang et al., 2018; Katzman et al., 2018). In this

study, we compared our model with DeepHit, a deep

learning model that lacks any strong assumptions and

can directly estimate the probability in each year. This

model achieved much better performances for medical

data than other previous models (Lee et al., 2018). Our

deep survival model based on a Weibull distribution

reached a performance level nearly equal to that of

DeepHit and thus has a sufficient ability to predict a

medical event. The most important difference between

DeepHit and our model is that our model assumes the

temporal distribution of event timing. Alzheimer’s disease

is an irreversible disease because of the gradual neurode-

generation and the lack of effective treatment. Therefore,

assuming a gradual increase of conversion risk with age-

ing would be natural.

At an individual level, a survival analysis has an advan-

tage in clinical settings because it allows the classification

of converters and non-converters within a given number

of years and can also identify early and late converters.

Several recent attempts have been made to classify early

and late Alzheimer’s disease converters (Li et al., 2018;

Shen et al., 2018), and these have yielded reasonably

high levels of accuracy (0.92–0.93). Therefore, our ap-

proach might require further refinement to increase the

accuracy of short-term predictions of the progression

from MCI to Alzheimer’s disease.

When predicting Alzheimer’s disease conversion from

MRI images, the addition of clinical information can im-

prove the performance. Previous studies have demon-

strated that Cox models based on imaging and clinical

variables exhibited superior predictive and diagnostic

value when compared to models based on only imaging

data (Blazhenets et al., 2019; Zhou et al., 2019). In this

study, we included the age and MMSE score as features

and compared the prediction performances of models

with and without these clinical variables. As in previous

reports, we observed robust improvements in the predic-

tion performances when both age and MMSE were

added, whereas age alone had no significant effect. A loss

of GMV is strongly correlated with age (Ge et al., 2002)

and can predict age with high accuracy (r¼ 0.92 between

the estimated and real ages) (Franke et al., 2010), sug-

gesting that the GMV in each region contains rich infor-

mation that reflects the chronological age.

A recent expansion of deep learning methodology has

enabled an understanding of the part of the input on

which the model focuses. In this study, the deep Taylor

decomposition analysis revealed that the inferior parietal

cortex, lateral and medial temporal cortex, cingulate cor-

tex, insula and thalamus especially contributed to the pre-

diction of Alzheimer’s disease conversion. These regions

are equivalent to the default mode and salience network

(Damoiseaux et al., 2006; Seeley et al., 2007) and most

correspond with regions exhibiting hypometabolism and

amyloid plaque accumulation (Buckner et al., 2008;

Palop and Mucke, 2010). These observed regions were

repeatedly identified in previous voxel-based morphom-

etry studies for Alzheimer’s disease and MCI (Mueller

et al., 2012; Minkova et al., 2017). Furthermore, a classi-

fication study of MCI based on support vector machine

suggested the heavy weighting of similar regions in their

model (Aguilar et al., 2013). In other words, both predic-

tion and classification models might focus on information

about similar regions and detect similar patterns of

x 10-4x 10-2

AAL BNA

Figure 4 Contribution of each region as calculated using a deep Taylor decomposition. Region separation was based on AAL (left

panel) or the BNA (right panel). Coloured areas indicate regions with significantly higher relevance score compared to the null distribution.
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atrophy, albeit each model is tailored for the specific pur-

pose. Possibly, we may be able to detect a slight distribu-

tion of brain atrophy suggestive of later Alzheimer’s

disease conversion, especially when using the default

mode network. This is particularly relevant in the case of

Alzheimer’s disease conversion.

One limitation of this study was our lack of consider-

ation of competing risks or the possibility that a subject

might convert to another type of dementia, such as de-

mentia with Lewy bodies or frontotemporal dementia.

Recently, deep learning has been used to develop a multi-

task model of survival analysis with competing risks (Lee

et al., 2018), in which the model directly learns the joint

distributions of survival times and events. The application

of this type of multi-task model to dementia studies

would be useful. However, public databases that include

MRI images of patients with dementia with Lewy bodies

or frontotemporal dementia are currently unavailable.

Therefore, it will be necessary to develop databases that

include structural images of the subjects during the pre-

dementia stage, as well as the final diagnosis of the de-

mentia subtype. Furthermore, we must consider recent

changes in research regarding the diagnosis of

Alzheimer’s disease using ATN staging (Jack et al.,

2018). In this framework, biomarkers are grouped into b
amyloid deposition, pathologic tau and neurodegenera-

tion. This new framework could improve the accuracy of

prediction of conversion to Alzheimer’s disease. We con-

ducted additional sub-group analyses for the subjects

who underwent amyloid PET measurements and con-

firmed that amyloid PET quantification improved the pre-

diction performance (see Supplementary material).

However, we could not conduct the analyses for only

NC group due to the small number of Alzheimer’s dis-

ease converters. To establish the long-term prediction of

Alzheimer’s disease conversion, more cases need to

be assessed.

In conclusion, structural changes can be detected by

MRI even 10 years before a clinical diagnosis of

Alzheimer’s disease (Tondelli et al., 2012). Here, we dem-

onstrated that a deep survival analysis could predict the

timing of conversion to Alzheimer’s disease at an individ-

ual level, with good accuracy. We have identified some

specific remaining issues, including the need to make

more precise predictions, especially with respect to very

short-term predictions and differential diagnoses of other

dementia types. However, we expect that our results will

yield a significant contribution to clinical trials with re-

spect to predicting the conversion to Alzheimer’s disease,

the most prevalent type of dementia.

Supplementary material
Supplementary material is available at Brain

Communications online.
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